Cosmological Simulations with Novel Dark Matter Physics

Ethan Nadler PACIFIC 2024 8/27/2024

Dark Matter Physics on Small Scales

Cold dark matter

New dark matter physics

Dark Matter Physics on Small Scales

- Dark matter physics affects structure lacksquareformation throughout cosmic history
- Matter clustering on sub-Mpc scales is mostly unconstrained
- Simulations are needed to explore a range of DM models on small scales

Pathways to Innovation and Discovery in Particle Physics

Determine the Nature of Dark Matter

Snowmass Cosmic Probes of Dark Matter Report (2209.08215)

Ab Initio DM Physics

<u>alter initial</u> <u>conditions</u>

production mechanism

Standard Model interactions

particle mass

<u>alter</u> <u>dynamics</u>

selfinteractions

> particle lifetime

particle mass

PROFILES > VARIABLE CENTRAL DENSITIES SPIRAL GALAXY > DARK DISKS > MICROHALOS > DARK STARS COMPU

> CORED OR CUSPY

Bechtol et al. 2022 (2203.07354)

The Landscape of Cosmological Simulations

- Cosmological simulations robustly predict nonlinear structure
- Dark matter only simulations enable DM parameter space exploration
- Zoom-in simulations resolve small scales in specific systems of interest (e.g. Milky Way, strong lenses)

Vogelsberger et al. 2020

Symphony Zoom-in Simulation Suites

- 262 cosmological CDM-only zoom-in simulations spanning four decades of host halo mass
- Includes the first large suites of LMC and strong lens analog host halos
- Run with a unified simulation and analysis code pipeline; all data is publicly available:

web.stanford.edu/group/gfc/gfcsims

EN et al. 2023 (2209.02675)

➤ concentration

Milky Way-est Zoom-in Simulations

- 20 cosmological CDM-only zoom-in simulations of Milky Way-like systems
- All realizations include analogs of the LMC and Gaia-Sausage-Enceladus
- All data is publicly available: web.stanford.edu/group/gfc/gfcsims

Deveshi Buch (Stanford)

Buch & EN et al. 2024 (2404.08043)

Gaia-Sausage-Enceladus

Simulation: EN

inceladus

Large Magellanic Cloud

O Milky Way

 \bigcirc

Visualization: Ralf Kaehler

Milky Way-est Zoom-in Simulations

Milky Way-est subhalos are more **abundant**, **radially** concentrated, and anisotropic than average

Buch & EN et al. 2024 (2404.08043)

 10^{0}

Simulating Initial Conditions Beyond CDM

Ab Initio

300,000 years after Big Bang

Today

Simulating Initial Conditions Beyond CDM

300,000 years after Big Bang

Today

COZMIC Zoom-in Simulations

Rui An (USC)

Andrew Benson (Carnegie)

Vera Gluscevic (USC)

EN et al., in prep.

Fuzzy Dark Matter

Interacting Dark Matter (n = 4)

EN et al., in prep.

Fuzzy Dark Matter

Interacting Dark Matter (n = 4)

EN et al., in prep.

COZMIC I: Warm Dark Matter

- Recalibrate WDM subhalo mass function suppression, including treatment of statistical uncertainties and halo-to-halo scatter; integrated with CLASS
- Subhalo mass function suppression is well constrained
- Extremely small contamination from spurious halos \bullet

COZMIC I: Fuzzy Dark Matter

- \bullet
- lacksquare

Fuzzy dark matter subhalo mass function cuts off more sharply than WDM due to P(k) shape

New calibration improves Milky Way satellite bound by order of magnitude: $|m_{\rm FDM} > 1.4 \times 10^{-20} \text{ eV}$

Subhalo mass function suppression

COZMIC I: Interacting Dark Matter

- \bullet WDM models with the same initial P(k) cutoff

Interacting dark matter models with prominent dark acoustic oscillations are "colder" than

• Accurate SHMF predictions improve interaction cross section bounds by orders of magnitude

COZMIC I: Semi-analytic Model Calibration

Calibrate extended Press-Schechter smooth-k window function to COZMIC I simulations Yields universal semi-analytic model for (sub)halo mass function; accurate to within ~10%

COZMC I: Mixed Dark Matter

- ullet

Parameterize mixed dark matter models by transfer function cutoff scale and plateau height Subhalo mass function suppression is reduced as plateau height increases, at fixed cutoff scale Simulations enable **new bounds** on ≥ 50% non-CDM components from Milky Way satellite counts

Simulating Strong Dark Matter Self-interactions

Strong, velocity-dependent self-interactions \rightarrow core-collapse in low-mass and/or highly concentrated halos

Simulating Strong Dark Matter Self-interactions

Strong, velocity-dependent SIDM diversifies subhalo profiles; mass/concentration/orbit influence evolution

COZMIC III: Warm + Self-interacting Dark Matter

First simulations of core-collapsing SIDM with initial conditions determined by light mediator model

COZMIC III: Warm + Self-interacting Dark Matter

Halo and subhalo mass function suppression mainly set by P(k); SIDM slightly enhances subhalo disruption

 $T_{\rm kd} = 0.72 \; \rm keV$

 $T_{\rm kd} = 0.72 \, \rm keV + SIDM$

- Symphony: 262 cosmological zoom-in simulations spanning four decades of host mass
- Milky Way-est: Subhalos in Milky Way analogs are more abundant, radially concentrated, and anisotropically distributed than average
- COZMIC I: Shape of P(k) suppression is imprinted on (sub)halo mass function; improves fuzzy and interacting dark matter bounds by orders of magnitude
- COZMIC II: Subhalo mass function is suppressed in mixed dark matter models; ~50% non-CDM components can be constrained by Milky Way satellites
- COZMIC III: Core collapse in strong, velocity-dependent SIDM is counteracted by P(k)suppression in light mediator models

CARNEGIE

SCIENCE

